Search results for "Engel group"
showing 2 items of 2 documents
Universal differentiability sets and maximal directional derivatives in Carnot groups
2019
We show that every Carnot group G of step 2 admits a Hausdorff dimension one `universal differentiability set' N such that every real-valued Lipschitz map on G is Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of f at a point x implies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.
Regularity of sets with constant horizontal normal in the Engel group
2012
In the Engel group with its Carnot group structure we study subsets of locally finite subRiemannian perimeter and possessing constant subRiemannian normal. We prove the rectifiability of such sets: more precisely we show that, in some specific coordinates, they are upper-graphs of entire Lipschitz functions (with respect to the Euclidean distance). However we find that, when they are written as intrinsic horizontal upper-graphs with respect to the direction of the normal, then the function defining the set might even fail to be continuous. Nevertheless, we can prove that one can always find other horizontal directions for which the set is the intrinsic horizontal upper-graph of a function t…